Future Generation Computer Systems 101 (2019) 576-589

Contents lists available at ScienceDirect a =
FIBICIS!
Future Generation Computer Systems
journal homepage: www.elsevier.com/locate/fgcs =
MPI jobs within MPI jobs: A practical way of enabling task-level N

fault-tolerance in HPC workflows™

Check for
updates

Justin M. Wozniak **, Matthieu Dorier ?, Robert Ross ?, Tong Shu ?, Tahsin Kurc ¢,

Li Tang ¢, Norbert Podhorszki ¢, Matthew Wolf¢

2 Argonne National Laboratory, 9700 S Cass Ave., Lemont IL 60439, United States
b Stony Brook University, Stony Brook, NY 11794, United States

¢ Brookhaven National Laboratory, Upton, NY 11973, United States

4 0ak Ridge National Laboratory, Oak Ridge, TN 37831, United States

HIGHLIGHTS

Support for this function in a high-level scripting language.

Demonstration of these concepts in multiple applications.

A novel MPI-compatible function to support fault tolerance in HPC workflows.

A novel workflow coordination model for coordinated bundles of MPI tasks.

ARTICLE INFO ABSTRACT

Article history:

Received 31 March 2018

Received in revised form 26 February 2019
Accepted 6 May 2019

Available online 17 May 2019

Keywords:

MPI

MPMD

Workflows

Ensemble simulations
Swift/T

Cram

While the use of workflows for HPC is growing, MPI interoperability remains a challenge for workflow
management systems. The MPI standard and/or its implementations provide a number of ways to build
multiple-programs-multiple-data (MPMD) applications. These methods present limitations related to
fault tolerance, and are not easy to use. In this paper, we advocate for a novel MPI_Comm_launch
function acting as the parallel counterpart of a system(3) call. MPI_Comm_launch allows a child MPI
application to be launched inside the resources originally held by processes of a parent MPI application.
Two important aspects of MPI_Comm_launch is that it pauses the calling process, and runs the child
processes on the parent’s CPU cores, but in an isolated manner with respect to memory. This function
makes it easier to build MPMD applications with well-decoupled subtasks. We show how this feature
can provide better flexibility and better fault tolerance in ensemble simulations and HPC workflows.
We report results showing 2x throughput improvement for application workflows with faults, and
scaling results for challenging workloads up to 256 nodes.

MPI_Comm_launch

© 2019 Published by Elsevier B.V.

1. Introduction

Multiple-programs-multiple-data (MPMD) applications are
becoming more and more common in today’s high-performance
computing (HPC) landscape. Simulations can be coupled with
analysis and visualization tools, enabling direct communication

* The submitted manuscript has been created by UChicago Argonne, LLC,
Operator of Argonne National Laboratory (“Argonne”). Argonne, a U.S. Depart-
ment of Energy Office of Science laboratory, is operated under Contract No.
DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting
on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, distribute copies to the public,
and perform publicly and display publicly, by or on behalf of the Government.
The Department of Energy will provide public access to these results of federally
sponsored research in accordance with the DOE Public Access Plan. http://energy.
gov/downloads/doe-public-access-plan.

* Corresponding author.

https://doi.org/10.1016/j.future.2019.05.020
0167-739X/© 2019 Published by Elsevier B.V.

between software components. Workflows run serial and parallel
tasks potentially written in different programming languages and
whose data dependencies need to be managed by the work-
flow management system (WMS). Ensemble simulations, which
consist of running many instances of the same simulation using
different input to compute statistics on their aggregated results,
can also be put under the workflow umbrella, since they pose
similar challenges in terms of process management and fault
tolerance.

For example, consider a case in which a researcher desires
to study a materials simulator S and the impact of simulated
temperature T on noisy simulation outputs Y. The user runs some
number N of simulations for each temperature over some domain
of temperatures, and averages the N results. Many potential
workflows could be performed, such as running higher accuracy
simulations using more processors when the simulation is very

https://doi.org/10.1016/j.future.2019.05.020
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2019.05.020&domain=pdf
http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
https://doi.org/10.1016/j.future.2019.05.020

J-M. Wozniak, M. Dorier, R. Ross et al. / Future Generation Computer Systems 101 (2019) 576-589 577

sensitive to temperature (high finite differences %), or adaptive

refinement between samples when dY is high. In this workflow, a
great many parallel jobs can be run concurrently, and most input
temperatures and processor counts are not determined until the
initial samples have completed. Thus, the user needs an efficient,
easily programmable, and portable way to launch many parallel
calculations based on emerging runtime data.

Solutions within the current MPI standard and/or its imple-
mentations include using MPMD mode in the MPI launcher’s
command line (mpiexec, aprun, etc., depending on the imple-
mentation in use); spawning new processes by using functions
such as MPI_Comm_spawn and MPI_Comm_spawn_multiple;
connecting independently started applications using
MPI_Comm_accept, connect, join; and rewriting each program
as a function, using MPI communicator management to split the
set of processes according to different roles. All these methods
have limitations and development overhead, and make fault
tolerance difficult if not impossible to manage.

Several requirements can be highlighted to better support
MPMD in an MPI context.

1. Dynamicity: One must be able to start and stop tasks (that
is, components of an MPMD application) during the run
time of a job, on a selected set of resources, without having
to specify those tasks statically at job submission time.

2. Resource isolation: Tasks must be able to run in an iso-
lated manner, with their own virtual memory space, to
avoid problems with shared symbols, memory leaks, etc.

3. Fault tolerance: The failure of a task due to software
defect should not impact other independent tasks. On the
contrary, workflow logic should be able to respond to such
a fault condition and react accordingly.

4. Ease of use: The mechanism should improve the pro-
grammability of workflow applications. In particular, it
should allow for the composition of existing MPI applica-
tions with little to no modifications in their initial code.

These requirements advocate for a simple solution: enable an
MPI application to be launched “inside” another MPI application.
In this paper, we propose a new MPI primitive,
MPI_Comm_launch, to ease MPMD programming and enable bet-
ter fault tolerance. MPI_Comm_launch acts as the parallel coun-
terpart of a system(3) call, which, in serial programs, pauses
the calling program to start the requested command (through
a shell) and returns the exit status of this command. Similarly
MPI_Comm_launch allows a child MPI application to be launched
from a set of processes in a parent MPI application. While the
processes in the parent application are paused, waiting for the
exit status of their child, the child application runs on the same
CPUs as the paused processes and executes in an isolated manner
with respect to memory. Additionally, the child application does
not share communication means with its parent. In case of a
software failure of the child application (e.g., segmentation fault,
or even the application calling MPI_Abort following inconsistent
computations) the parent application is not affected and is made
aware of the failure through the child’s return status, offering
the workflow manager a chance to react to the failure by either
restarting the task, or notifying the user of the task’s failure.

MPI_Comm_launch allows the WMS to be an MPI application
that runs other MPI applications as tasks in a perfectly isolated
manner.

Example use cases. Ensemble simulations can be written very
effectively using MPI_Comm_launch. The parent application is
a small harness code that splits its set of processes and have
groups of processes call MPI_Comm_launch to execute instances
of the simulation in parallel, making sure that any error in one

of the instances will not propagate to the other. In coupled
simulation models (e.g., simulations comprising of a land, atmo-
sphere, and ocean component), the parent application can be
in charge of launching the components on the right processes
as child applications, setting up non-MPI communication mech-
anisms beforehand (e.g. through a coupler). Any failure of one
of the component is reported to the parent application, which
can restart the failed component without affecting the other
components.

While WMS in the cloud computing area are usually built
with task-level fault-tolerance in mind, MPI programs that use
MPI_Comm_spawn or invoke external code via library interfaces
are not fault tolerant with respect to process failure. A workflow
hand-written using MPI or using an MPI-based WMS such as
Swift/T [1,2] or Chiron [3] is thus not fault tolerant even with
respect to simple application-level job crashes. Thus, support-
ing task-level fault tolerance in HPC workflows through MPI is
critical.

Contributions. This paper makes the following contributions.

e We propose the MPI_Comm_launch function along with its
semantics, and we compare its advantages with existing
MPMD functionalities (Section 3).

e We provide an implementation of MPI_Comm_launch and
recommend better ways of integrating it in existing MPI
implementations such as MPICH (Section 3.4).

e We exemplify the use of MPI_Comm_launch in two con-
texts: the Swift/T parallel scripting language and its asso-
ciated ADLB-based [4] runtime, and the Cram library from
Lawrence Livermore National Laboratory (LLNL), designed to
run ensemble simulations (Section 4).

e We describe a complex in situ workflow in molecular dy-
namics and Voronoi tessellation, and describe advanced MPI
workflow features to handle this workflow structure and
layout complexities of this and similar cases.

e We evaluate the benefits of MPI_Comm_launch in terms
of programming overhead, performance, and fault tolerance
using CODES-ESW, a real HPC workflow used for design-
space exploration of network topologies using the CODES
network simulator and synthetic tests designed to analyze
raw performance (Section 5).

This paper extends a previously published workshop paper [5]
in the following ways: Besides minor revisions following the
advice of WORKS reviewers, the main addition to this paper
consists of a new use case: code coupling with LAMMPS and
Voro++ as a motivating application. LAMMPS is a widely used
molecular dynamics simulation framework. Voro++ is a library
carrying out 3D Voronoi tessellation. Contrary to the use cases
presented in our WORKS paper (Swift/T workflow and Cram
ensemble simulations), where the tasks launched have no de-
pendencies between one another and do not communicate with
one another, LAMMPS+Voro illustrates a situation where com-
munication between independently launched tasks is established
through a third-party middleware, namely ADIOS. We designed
an additional workflow capability that enables such additional
workflow structure and is fully compatible with the previously
presented work. These additions may be found in the presenta-
tion of the LAMMPS-Voro++ application (Section 4.2) and the new
coordinated launch feature (Section 4.4).

2. Background and related work

In this section we first describe our fault model. We then
detail ways of implementing MPMD applications and workflows
using MPI. Table 1 summarizes how each of them satisfies the
requirements presented in Section 1.

578 J-M. Wozniak, M. Dorier, R. Ross et al. / Future Generation Computer Systems 101 (2019) 576-589

2.1. Note on the failure model

In this work, we follow the reliability definitions from Hen-
nessy and Patterson [6]. In short, a software defect or other
anomaly causing a program to crash is a fault; this leads to
an error state in software; unhandled errors result in service
failures that propagate up to higher levels of the system archi-
tecture, ultimately to the user. We use the term abort to indicate
other software components that fail due to the failure of a peer
component.

The current MPI standard is vague when it comes to fault
tolerance. For example, it does not specify what should happen
in case of a hardware failure. For this, some tools such as BLCR!
allow to checkpoint and restart MPI applications, and migrate
processes. Some work has been done to propose new functions
for supporting fault tolerance at user-level [7], but they have not
yet been included in the standard.

Another place where the standard remains imprecise is when
calling MPI_Abort from a process, in which case the standard
recommends that the processes only in the provided communi-
cation group be aborted, while, to the best of our knowledge,
all implementations abort the entire application. In this situa-
tion tools like BLCR are hardly useful, since the application has
explicitly aborted itself.

We call task-level fault-tolerance the fact of being able to con-
tain a fault to a subset of processes logically representing a
well-defined component, or task. The reason for the failure is only
software-related, may have been requested explicitly (e.g., with
MPI_Abort) or not (e.g., segmentation fault). A framework is
task-level fault-tolerant if, when a logical subset of processes fails,
the framework is notified so as to take action, and the hardware
running the failed processes remains available for running other
processes in the future.

While our contribution enables task-level fault-tolerance in
MPI-based HPC workflows, we do not claim to provide a solution
to process-level fault-tolerance (e.g., reconfiguring the application
after a process failed and rolling it back to a consistent state).

2.2. MPMD techniques using MPI

2.2.1. MPI launcher MPMD mode

Although the MPI standard does not define an interface that
the process launcher (mpiexec, aprun, etc.) must comply to,
its implementations can generally be used to enable MPMD by
specifying multiple executables and their arguments, as well
as the number of processes on which each should run. The
executables then share a common MPI_COMM_WORLD commu-
nicator. This mode is therefore convenient for coupled codes,
provided that each component of the application is aware that
MPI_COMM_WORLD is being used by other components.

This MPMD mode is, for instance, used in the Decaf mid-
dleware,” which couples components and establishes commu-
nications between them. The Python script that describes the
software components and their data flows is used to issue an
mpiexec command under the cover, with the proper settings to
enable each component to run on the appropriate locations.

In other contexts, however, the MPI launcher’s MPMD mode
presents more limitations. Ensemble simulations require launch-
ing thousands of instances with different input parameters. One
would need to make sure that the simulation code does not use
MPI_COMM_WORLD, since this communicator is shared among all
instances. Also, the run time of the set of simulation instances
is that of the slowest instance, leaving resources idle with no

1 http://crd.Ibl.gov/departments/computer-science/CLaSS/research/BLCR/.
2 https://bitbucket.org/tpeterkal/decaf.

possibility for scheduling more work. A better approach would
be to launch instances in parallel but also one after the other
as resources are released by completed instances; unfortunately,
the MPI launcher’'s MPMD mode cannot do this, since they are
inherently supposed to start all the provided executables at once.
LLNL's Cram library, described in more detail in Section 4.1,
overcomes the issue of isolating communications, but it does not
allow starting instances one after the other.

In the context of HPC workflows, the MPI launcher's MPMD
mode simply does not fit: tasks corresponding to individual pro-
grams have to be started and stopped dynamically in a way that
cannot be predicted when writing the command line.

We also note that on many supercomputers this method of
running MPMD programs does not allow multiple executables to
reside on the same node (all the cores of a node have to execute
the same program).

In terms of fault tolerance, this method does not allow limiting
a fault to the faulty component, unless a process-level fault-
tolerance mechanism is used; such a mechanism is yet unstan-
dardized.

2.2.2. Communicator management

Another way of implementing MPMD applications and work-
flows is to make sure each software component is written as
a library, with an entry function that at least takes the com-
municator to use in place of MPI_COMM_WORLD. Distinct appli-
cations can then be bound together by calling them from a
program that builds the appropriate communicators between
groups of processes. The MPI functions that help achieve this are
MPI_Comm_split and MPI_Comm_create.

This method is particularly useful for codes coupled for in situ
data processing. As an example, Damaris [8], is a middleware that
enables in situ analysis and visualization through dedicated cores
or dedicated nodes. The initialization function of Damaris calls
MPI_Comm_split to assign to some processes the tasks related
to in situ analysis. The client application is, however, required
not to use MPI_COMM_WORLD; hence, some development effort is
necessary to adapt legacy codes, namely, finding all occurrences
of MPT_COMM_WORLD in the code and changing it to a global vari-
able initialized with a smaller communicator. While such changes
seem reasonable, they can be troublesome when libraries upon
which the code depends also use MPI_COMM_WORLD directly. This
is the case in the workflow presented in Section 5.1, where ROSS,
the library upon which CODES is built, uses MPI _COMM_WORLD.

MPI_Comm_create_group is used by the Swift/T WMS, de-
scribed in more detail in Section 4.3, to call workflow tasks from
a subset of worker processes. Again, the workflow tasks have to
be written as libraries exposing an entry function that accepts a
communicator. They should not use MPI_COMM_WORLD. Convert-
ing an existing, standalone MPI program into a library that can
be used as a task therefore requires development overhead, as
exemplified in Section 5.2.

This method of implementing MPMD programs is not fault
tolerant beyond what a process-level fault-tolerance mechanism
would provide. Since tasks are called as functions, a software fault
in a function leads to the abort of all the components of the appli-
cation and workflow beyond the function itself. In addition, con-
trary to MPI's launcher MPMD mode and to MPI_Comm_spawn,
tasks are not isolated in their own processes; hence the devel-
oper has to make sure that the function does not leak memory
and does not have symbols in common with other software
components.

http://crd.lbl.gov/departments/computer-science/CLaSS/research/BLCR/
https://bitbucket.org/tpeterka1/decaf

J-M. Wozniak, M. Dorier, R. Ross et al. / Future Generation Computer Systems 101 (2019) 576-589 579

Table 1

Summary of the existing approaches to MPMD and how they satisfy the requirements presented in the introduction. (The notion of
“programmability” denotes whether code changes in the child application are necessary).

Approach Dynamicity Memory isolation Fault tolerance Programmability
MPI Launcher’s MPMD mode X v X Some code changes
Communicators management v X X Many code changes
MPI_Comm_spawn v v X Some code changes
MPI_Comm_launch (this work) v v v No code changes

2.2.3. MPI_Comm_spawn(_multiple)

MPI_Comm_spawn and MPI_Comm_spawn_multiple are po-
tentially the most appropriate functions from the current stan-
dard for implementing workflows and more generally MPMD
applications. They act as the parallel equivalent of the fork(2)/
execv(3) sequence by creating new processes and using them
to run a given MPI application. A communicator is created that
lets the spawned application communicate with its parent.

MPI_Comm_spawn could potentially help implement coupled
codes, workflows, and ensemble simulations, but it has several
limitations. The first is that, contrary to a fork(2)/execv(3)
sequence that is usually followed by a wait(3) in the parent
process, there is no function to check whether the spawned
application has terminated. The only way the parent application
can “wait” for the child application is by having the child send
a termination message to the parent using MPI_Send, and call
MPI_Comm_disconnect on the communicator that binds it to
its parent. The reusability of the resources associated with a
spawned application that terminated is not discussed in the MPI
standard.

The second limitation of MPI_Comm_spawn is that of resource
management. The MPI 3.1 standard states in its section 10.1 that
“The MPI Forum decided not to address resource control because it
was not able to design a portable interface that would be appropriate
for the broad spectrum of existing and potential resource and process
controllers”. In other words, where the child processes are started
is up to the resource manager, with the help of user-provided
attributes from the passed MPI_Info argument (e.g. hosts and
hostfile keys). This means that to start processes on previously
idle cores, the resource manager should allow to reserve a set of
nodes, launch an MPI program on some of them, while informing
the MPI runtime that other nodes are available for spawning
processes later. To start processes on cores where an MPI process
already runs, the operating system must support oversubscrip-
tion, which is often not the case on supercomputers because of
the limited support for preemptive process scheduling. For these
reasons IBM and Cray’s implementations of MPI do not support
MPI_Comm_spawn. IBM Blue Gene/Q, in particular, has hardware
limitations that make it impossible to implement.

The third limitation is, again, fault tolerance. In all current
implementations of MPI, because the spawned application and its
parent share a communicator, a fault in the spawned application
will propagate to the parent, and abort the entire set of software
components.

3. MPI_Comm_launch

In this work we advocate for a parallel counterpart of the
system(3) function, which blocks the calling process until the
provided command is run and which returns the exit status of this
command upon termination. We propose the MPI_Comm_launch
function, with the following C prototype:

int MPI_Comm_launch(char* command, char* argv[],
MPI_Info info, int root,

MPI_Comm comm, int* status);

and the following Fortran prototype:

MPI_COMM_LAUNCH(COMMAND, ARGV, INFO, ROOT,
COMM, STATUS, IERROR)
CHARACTER* (*) COMMAND, ARGV (*)
INTEGER INFO, ROOT, COMM, STATUS, IERROR

Like the first two parameters of MPI_Comm_spawn, the
command argument provides the path to the MPI program to be
executed and argv (null-terminated array of strings) provides its
arguments. The info parameter can be used to provide options
that would normally be passed to the MPI launcher’s command
line, such as forwarded environment variables, standard output
formatting and redirection for the executed processes. The root
argument is the rank of the process in which previous arguments
are examined. The comm communicator gathers all the processes
collectively calling this function. When the child application ter-
minates, the status parameter is set to the child application’s
exit code.

Listing 1 shows an example usage of MPI_Comm_launch where

a child application is launched on half the processes of the parent.
MPI_Comm childcomm;
int color = rankInWorld < sizeOfWorld/2 ? 0 : 1;
int key = rankInWorld;
MPI_Comm_split(MPI_COMM_WORLD, color, key, &childcomm) ;
if (color) {
int status;
MPI_Comm_launch("./child", NULL, MPI_INFO_NULL, O,
childcomm, &status);

O oOONDOULA WN =

}

Listing 1: Example C code splitting MPI_COMM_WORLD and
running a child application on half of the parent processes.

3.1. Semantics

MPI_Comm_launch is a collective operation over its provided
communicator argument. Its semantics are similar to calling the
given executable as a collective function taking an array of ar-
guments and a communicator, and in which MPI_COMM_WORLD is
replaced with the provided communicator. Contrary to a function
call, however, the execution of the command is isolated in new
processes with their own virtual memory.

More specifically, all processes calling MPI_Comm_launch
transition to a blocked state. On each core where the function
is called, a new process is created and executes the provided
command. The new processes form a single MPI application with
its own MPI_COMM_WORLD. The order of processes (that is, their
rank in MPI_COMM_WORLD) in this new application follows that
of the parent processes in the communicator provided as argu-
ment. Once the child application terminates, the parent processes
switch back to a running state. On all parent processes the status
parameter is set to the exit status of the child application as
defined in the following.

Exit status. If all processes in the child application call
MPI_Finalize, the exit status is 0. If however one process calls
MPI_Abort with an error code X, or calls exit (X), or terminates
with a particular error code (e.g. 11 for a segmentation fault),
this error code is set as status for the entire child application. If
multiple processes fail with a different error code, one of them is
chosen as exit status and is consistent across all parent processes.

580 J-M. Wozniak, M. Dorier, R. Ross et al. / Future Generation Computer Systems 101 (2019) 576-589

3.2. MPI_Comm_1launch is not MPI_Comm_spawn

Why block the parent processes? As explained earlier,
MPI_Comm- _spawn creates new processes but does not block
the calling ones. The location of these processes depends on
user-provided attributes and on the resource manager, hence the
standard remained vague and major vendors simply do not sup-
port MPI_Comm_spawn. MPI_Comm_launch, however, does not
require any additional resources, hence it does not depend on the
resource manager. Also the number of running processes/threads
remains constant before, during, and after its execution. Hence,
supporting MPI_Comm_launch is less challenging, even on plat-
forms where an OS without a preemptive scheduler enforces
the existence of exactly one process or thread per computing
element. A precise description of MPI_Comm_launch can thus
be added to the standard without depending on the resource
manager or the OS. It will allow implementors to handle the com-
plexity of launching the new processes in their various operating
systems and environments in a portable manner.

Why restrict communication? With respect to communi-
cation, MPI_Comm_spawn creates an intercommunicator shared
by the calling processes and the spawned application, whereas
MPI_Comm_launch does not create such a communication
mechanism. While this can be seen as a limitation, it is actually an
advantage. As explained in Section 2.1, the MPI standard remains
vague about propagating software failures. Implicitly opening po-
tentially unnecessary communicators gives a chance for failures
to propagate beyond a single launched task. MPI_Comm_launch
ensures no communicator is created between the parent and
the child, hence making it easier define failure containment to
the child application. In case of a software failure or an abort,
the child application will simply terminate with a nonzero exit
code, and its parent will be notified of the failure through the
returned status. Section 6 provides more thoughts about initiating
communication between tasks.

Workflows, ensemble simulations, and coupled models The
use of MPI_Comm_launch greatly simplifies the implementa-
tion of workflows, coupled models, and ensemble simulations. It
enables starting subapplications dynamically and in an isolated
manner, letting developers set up the necessary communication
and fault tolerance mechanisms they need to react to task faults.
In workflows in particular, it enables tasks to be decoupled from
the workflow itself, in terms of both programmability (the tasks
can be designed as independent programs) and reliability (the
tasks execute in an isolated manner). In Section 4 we present two
use cases illustrating the benefits of MPI_Comm_launch in the
context of ensemble simulations and workflows.

3.3. MPI_Comm_1launch for fault tolerance

The main advantage of MPI_Comm_launch lies in its abil-
ity to contain faults. If one of the child application processes
crashes because a software-related error (e.g., segmentation fault,
erroneous computation, I/O error), the parent application will
not only continue running, it will be informed of the nature of
the fault through the status parameter of MPI_Comm_launch,
giving it a chance to react appropriately. Additionally, any com-
munication fault in either the child or the parent application
will not propagate to the other because they are not sharing a
communicator. MPI_Comm_launch also contains memory usage
in the child application to the duration of its execution. If the child
application suffers from memory leaks, these leaks do not con-
taminate the parent application’s memory, and do not propagate
beyond the execution of the child.

An example of the use of the status code for fault tolerance
and response is shown in Listing 2.

1 int status = -1, max_tries = 3;

2 | for (int try = 0; try < max_tries; try++) {

3 MPI_Comm_launch("./child", NULL, MPI_INFO_NULL, O,
4 childcomm, &status);

5 if (status == 0) break;

6 | ¥

7 | if (status !'= 0) { // Handle failure...

Listing 2: Example C code to respond to faults in child MPI job.

In this example, the child MPI program ./child is re-run
up to max_tries=3 times, until it returns status code 0. These
faults can be caused explicitly by the application, or induced
by bugs (segmentation violations) or other system faults. When
the number of tries is exhausted, the loop exits, and the user
checks for and handles the resulting failure (line 7). Note that
MPI_Comm_spawn does not allow for this kind of fault handling.

3.4. Implementation

We implemented a prototype> of MPI_Comm_launch as an
MPI extension function, MPIX_Comm_launch. This function
works as follows (its signature is in the beginning of Section 3).

1. Each process in comm calls MPI_Get_processor_name to
retrieve the name of the host on which it runs.

2. MPI_Gather is called to gather all the host names at the
root process.

3. The root process formats the array of hostnames as a
comma-separated list, as well as other potential arguments
provided in the info variable.

4. The root process calls the system(3) function with a com-
mand that invokes mpiexec on the specified executable
and with the arguments previously formatted.

5. Once the system call completes in the root process,
MPI_Bcast is called to broadcast the exit status of the
program to all other processes.

The root process blocks in the system(3) call while all other
processes block in the MPI_Bcast during the execution of the
child application. Because of the use of system and mpiexec, two
more processes are created in the node running the root process:
one shell instance to invoke the command and one mpiexec
process (plus potentially other processes created by mpiexec).

This implementation works on traditional Linux clusters in
which process management is not an issue. On supercomput-
ers, however, a different implementation could be required. In
particular, we envision a direct use of the Process Management
Interface [9] (PMI*) to reuse resources of the parent application
(such as the KVS space) without calling mpiexec or a shell. Such
an implementation would work as follows.

1. Each process in comm calls the PMI interface to put key
information required for the child application to bootstrap.

2. Each process in comm calls fork(2) then execv(3) to
create a process of the target executable, followed imme-
diately by wait (3).

3. The newly created processes use the PMI interface to get
the necessary information to bootstrap their communica-
tions. This includes information put by parent processes as
well as information related to the parent application that
is inherited by the child.

4. Once the wait () calls complete, MPI_Bcast is called by
the parent processes to broadcast the exit status of the
program to all other processes.

3 See https://bitbucket.org/mdorier/mpix_launch.
4 https://wiki.mpich.org/mpich/index.php/PMI_v2_APL

https://bitbucket.org/mdorier/mpix_launch
https://wiki.mpich.org/mpich/index.php/PMI_v2_API

J-M. Wozniak, M. Dorier, R. Ross et al. / Future Generation Computer Systems 101 (2019) 576-589 581

4. Case studies

In this section, we present three practical use cases motivating
the addition of MPI_Comm_launch to the MPI standard: LLNL’s
Cram, code coupling in LAMMPS and Voro, and Swift/T workflows.

4.1. LLNL’s cram

Cram® [10] is a tool that lets users pack and launch many
small instances of an application as a single MPI program. It
was developed by LLNL as a way to avoid overloading the job
scheduler on the Sequoia supercomputer when running millions
of small MPI jobs, and because running a single job script with
a million mpiexec calls would cause the frontend to run out of
resources such as memory or number of processes.

In order to use Cram, the application should be linked with
libcram.a. The user then generates a cram.job file containing the
list of instances to run, along with their arguments. When the
application runs, the initial call to MPI_Init reads the Cram job
file and splits MPI_COMM_WORLD into as many smaller communi-
cators as necessary to run all the instances of the application in
parallel. The library overloads all the MPI functions such that any
later reference to MPI_COMM_WORLD is replaced with the appro-
priate smaller communicator. Each MPI process thus “believes”
it is part of a much smaller group of processes than the actual
MPI_COMM_WORLD really is. Cram also redirects each instance’s
standard output and standard error into individual files.

4.1.1. Cram’s limitations

Since Cram is implemented as a library against which the
desired application is linked, it can run instances of only that
application. Distinct executables cannot be packaged using Cram,
thus making MPMD impossible.

Additionally, if one instance of the application fails, all in-
stances will abort. Cram does not provide any fault tolerance
mechanism to safely terminate one instance without impacting
other instances, let alone the ability to restart failed instances.

A Cram job should run on at least as many processes as the
sum of the processes required by each of its individual instances.
If a smaller number is provided, Cram is not able to schedule
instances one after the other. Thus all the instances run in parallel,
and the entire job takes as much time to complete as the time
required by the longest instance.

Moreover, because Cram relies on the MPI profiling API (PMPI),
the application cannot use tracing libraries such as DUMPL®
IPM’ [11], or Darshan® [12], in conjunction with Cram.

4.1.2. Cram with MPI_Comm_launch

MPI_Comm_launch provides a good opportunity to reimple-
ment Cram in a way that overcomes its current limitations.
Using MPI_Comm_launch, Cram would be implemented as a
standalone MPI program that reads a cram.job file and calls
MPI_Comm_launch for each instance on the required number
of processes. Because the Cram program would be used instead
of the user’s application, it would be able to run instances of
different executables, thus effectively enabling MPMD.

Since an application executed using MPI_Comm_launch can
fail without causing the failure of its parent application, Cram
would immediately support fault tolerance. Additionally, failed
instances would not make other instances abort.

5 https://github.com/LLNL/cram.

6 http://sst.sandia.gov/using_dumpi.html.

7 http://ipm-hpc.sourceforge.net/.

8 http://www.mcs.anl.gov/research/projects/darshan.

A Cram executable relying on MPI_Comm_launch could also
implement scheduling techniques to run a set of instances on any
number of processes, provided that this number is at least as large
as the largest instance to schedule. This would allow for a better
resource utilization.

Moreover, because Cram would not need to overload all the
MPI functions to catch and replace MPI_COMM_WORLD, the
launched instances (as well as Cram itself) could use the PMPI
API for other purposes such as communication and 1/O tracing.

One could note that Cram’s motivation was to prevent the cre-
ation of hundreds of thousands of processes when calling series of
mpiexec, and that our proposed solution using
MPI_Comm_launch also creates new processes. However, such
process creation is spread across all resources allocated to the
job, instead of being located at the frontend.

All these considerations motivate the addition of
MPI_Comm_launch as a way to simplify packing many instances
of potentially multiple executables as a single MPI job.

4.2. Code coupling: LAMMPS+Voronoi tessellation

This use case represents scenarios in which codes, which may
potentially be developed by different groups, are coupled for on-
line analysis. The example here is a coupling of the LAMMPS
molecular dynamics simulator framework [13] with a Voronoi
tessellation analysis code, Voro++ [14]. LAMMPS is implemented
as a classical molecular dynamics code and can be used to model
particles at the atomic and continuum scales. It has been used
in a variety of application domains for simulation of solid-state
materials, soft materials (e.g., biomolecules) and mesoscopic sys-
tems. Voro++ is a C++ library designed to carry out efficient
3-dimensional computation of the Voronoi tessellation [15]. It
can be used to analyze a system of particles and their statistics,
such as particle neighborhood information, cell volumes, and
cell surface area. In our case, LAMMPS outputs particle data at
user-specified intervals (e.g., at every 10 simulation time step).
LAMMPS output consists of the locations and velocities of parti-
cles (atoms) in a 3-dimensional mesh at a given time step. The
particle data at each output time step is processed for Voronoi
tessellation, and a number of statistics are computed for other
analyses.

LAMMPS is a parallel simulation framework that employs do-
main decomposition methods and MPI for message passing for
execution on large parallel machines. Voro++ can be set up to run
as a multi-threaded library using multiple cores on a computation
node to speed up the Voronoi computations. We implemented a
multi-threaded MPI program using the Voro++ library for compu-
tation of Voronoi tessellations on LAMMPS output. This program
employs a master-worker pattern. One MPI process (the master
process) reads particle data at each time step of the simulation
output and sends it to an idle worker process dynamically. Each
worker processes the received data using multiple CPU cores.

LAMMPS and the Voronoi tessellation program are separately
developed MPI programs. A typical scientific study in LAMMPS
will perform many simulations with different temperatures or
other configuration changes, and observe the visual outputs. Each
program can be allocated different numbers of nodes in order to
optimize resource utilization and reduce overall execution time.
Thus, a single Swift/T script is used to run many such invocations
as a logical workflow.

In order to enable in situ data exchange between the two
programs, we used the ADIOS framework [16,17]. ADIOS provides
interfaces and runtime support to create, read/write, and manage
very large datasets in self-describing file structures and to enable
efficient staging and in-transit manipulation of such structured
data. ADIOS also contains a module called Flexpath [18] that

https://github.com/LLNL/cram
http://sst.sandia.gov/using_dumpi.html
http://ipm-hpc.sourceforge.net/
http://www.mcs.anl.gov/research/projects/darshan

582 J-M. Wozniak, M. Dorier, R. Ross et al. / Future Generation Computer Systems 101 (2019) 576-589

Table 2
Categorization of task types in Swift/T.
Mode Task type
In-memory External program
Sequential Scripting langs [21] app function [19]
Parallel @par function [24] MPI_Comm_launch (this work)

allows parallel applications to exchange data directly over TCP/IP,
without delays due to accessing persistent storage.

In our use case implementation, we integrated ADIOS methods
with LAMMPS 1/0O layer so that output from LAMMPS can use
ADIOS methods. Similarly, we incorporated ADIOS methods in the
Voro++-based Voronoi tessellation program so it could read data
from LAMMPS on the fly. With MPI_Comm_launch, our imple-
mentation coordinates the concurrent execution of LAMMPS, the
Voronoi program and (optionally) the ADIOS staging processes.

In order to carry out on-line analysis, both programs are
executed concurrently in MPMD mode and exchange data directly
over the network. Thus, in our experimental layout, LAMMPS data
is read directly by Voro++ to produce the tessellations, and the
LAMMPS data is not stored on disk. Using MPI_Comm_launch
we can launch the two programs concurrently without having to
pre-allocate resources, as described in Section 4.4.

4.3. Swift/T workflows

Swift? [19] is a programming language to support massively
scalable compositional programming. It has implicitly parallel
data flow semantics, in which all statements are eligible to run
concurrently, limited only by the data flow. Swift emphasizes
a hierarchical programming model, in which leaf tasks linked
to external libraries, programs, and scripts in other interpreted
languages [20,21] execute concurrently, coordinated by logic ex-
pressed in Swift code. Swift is typically used to express sci-
entific workflows [22], controlling execution of relatively large
tasks (seconds to hours); however, its high performance (1.5
billion tasks/s on 512K cores [2]) allows it to be used as a high-
performance computing language as well.

The Swift/T implementation [1,2] translates Swift scripts into
MPI programs. Swift/T programs run on the Turbine runtime [23],
which implements a small number of data-flow primitives that
enable Swift semantics on a scalable system without bottlenecks.
Turbine is based on the Asynchronous Dynamic Load Balancer
(ADLB) [4], a scalable master-worker system based on MPIL.

4.3.1. The Swift/T task model

Swift/T has multiple ways of invoking a user code as tasks, as
categorized in Table 2. The traditional and most common method
in practice inherits from the legacy of Swift as a grid workflow
language. This consists of putting the shell command required to
call the executable in an app leaf function. This method allows
a single worker to call the command. Swift/T extends this model
with the ability to call into in-memory, embedded script language
interpreters that are optionally compiled into the Swift/T run-
time. Using this, for example, a user can wrap C/C++/Fortran code
with Python using SWIG [25] or f2py10 and invoke it very con-
veniently and efficiently via a Swift/T function. Swift/T currently
supports Python, Tcl, Julia, and JVM language (JavaScript, Groovy,
Scala, and Clojure) interfaces.

9 http://swift-lang.org.
10 https://docs.scipy.org/doc/numpy-1.10.0/f2py.

Parallel tasks. Enabling the executable to run on multiple work-
ers incurs a higher development overhead. First, the executable
has to be rewritten as a library, exposing an entry function
whose first argument is the communicator to use in place of
MPI_COMM_WORLD. The developer should make sure that the ap-
plication does not use MPI_COMM_WORLD but uses the provided
communicator instead. Additionally, any use of global variables in
the executable becomes dangerous. The second step is to generate
a Tcl interface to this function that calls the Turbine Tcl API to
retrieve input data and store the results. This is not a trivial task
and benefits from the help of a Swift developer.

When it comes to calling external programs, the main lim-
itation of Swift/T is its lack of support for fault tolerance. If a
command wrapped in an app leaf function returns a nonzero exit
code to Swift/T, the execution of the Swift/T workflow will abort,
returning that exit code (a typical approach is to handle such
faults in a wrapper shell script). As for C functions invoked as
libraries, any failure inside these functions will make the entire
workflow abort as well.

4.3.2. Swift/T with MPI_Comm_1launch

We constructed an interface for MPI_Comm_launch accessible
from Swift/T workflows called launch. This function has the
following prototype:

(int status) launch(string cmd, string argv([])
It can be called in a Swift script as follows:
¢ = @par=32 launch("/path/to/mpi/program", args);

This script will launch the desired MPI program on 32 workers,
with the provided arguments, and store the program’s exit code
in the variable c.

The launch function is different from calling an app leaf
function that embeds mpiexec (or a bash script calling mpiexec).
The latter would create new processes on targeted nodes, even
though Swift/T workers are running on those nodes and could
potentially run other tasks. As of today’s Swift/T API, adding
launch was the only way to run the external parallel program
inside the workers. It could not have implemented with currently
available functions of the MPI standard, in particular because
MPI_Comm_spawn creates new MPI processes instead of using the
workers.

Compared with rewriting executables as libraries to enable
them to run as parallel tasks of a Swift workflow, our launch
function completely alleviates the development overhead re-
quired to call external programs in parallel from a Swift/T script.
This use case again advocates for the adding MPI_Comm_launch
to the MPI standard.

We also provided a launch_turbine function that, instead
of launching an MPI program, launches another Swift/T workflow.
This function allows to treat a subworkflow as a single task from
the point of view of the parent workflow and is therefore very
useful to prioritize subtasks and enforce execution locality.

4.4. In situ code coupling with coordinated launch

In many cases, such as the LAMMPS-Voro++ use case de-
scribed previously (Section 4.2), it is desirable to launch multiple
tasks in a coordinated fashion. Consider a workflow in which
many LAMMPS runs must be performed at differing tempera-
tures, and each must be connected to a Voro++ instance for in
situ tessellation. If the workflow system is not informed about
the coupling requirements, then each pair of LAMMPS and Voro++
could be run at different times in the workflow, making it impos-
sible for them to communicate. An illustration is shown in Figs. 1
and 2.

http://swift-lang.org
https://docs.scipy.org/doc/numpy-1.10.0/f2py

J-M. Wozniak, M. Dorier, R. Ross et al. / Future Generation Computer Systems 101 (2019) 576-589

Time

Fig. 1. Depiction of uncoordinated launches. Workflow diagrams. L is LAMMPS,
A is ADIOS, V is Voro++. Additional workflow structure is needed to capture the
in situ communication between matching L-A-V instances. Black arrows depict
dataflow dependency in the workflow script, red arrows depict bulk in situ data
transfer over ADIOS. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

]
CAI™N(CA)
N
I i
()@
]
_.”V

-
-

Time

Fig. 2. Depiction of coordinated launches. Workflow diagrams. L is LAMMPS, A
is ADIOS, V is Voro++. Additional workflow structure is needed to capture the
in situ communication between matching L-A-V instances. Black arrows depict
dataflow dependency in the workflow script, red arrows depict bulk in situ data
transfer over ADIOS. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 1 illustrates a naive user attempt to couple LAMMPS and
Voro++ with pure dataflow. The user is defeated by the load bal-
ancing runtime, which does not schedule the task pairs together,
meaning the tasks cannot connect with ADIOS and communicate.
What is desired is shown in Fig. 2, in which additional structure,
shown as bounding boxes around each L-A-V group, is scheduled
together (ADIOS may or may not require additional processes to
run, depending on the underlying data transfer library).

We added the launch_multi() function to Swift/T to sup-
port the desired progress model. It has the signature shown in
Listing 3.

// Definition:

Opar (int status) launch_multi(int procs[], string cmd[],
string argv[1[], string envs[1[],
string color_setting="";

// Invocation:

int procs[] = [6, 21];

string cmd[] = ["programl", "program2"];

... // Other settings ...

@par=sum(procs) launch_multi(procs, cmd, ...);

OO NDUTAWN =

Listing 3: Definition and invocation of launch_multi() .

For each index i in procs, procs[i] is the number of MPI
processes, cmd[i] is the program command to run, argv[i]
is the array of string arguments to that program, and envs[i]
is the array of string environment variables for that program.
color_setting is optional and discussed below.

From the perspective of Swift/T, an invocation of
launch_multi() is atomic: it has a finite set of inputs and

583
. Buffer Viz
Sim (Free RAM)
(] 1 8 9 16 17
2 3 10 11 18 19
4 5 12 13 20 21
shmem 22 23

Node 0

Node 1 Node 2

Fig. 3. Rank layout result from Listing 4.

outputs, and is managed as a unit. For example in the case shown
in Listing 3, program1 will have 6 processes, program2 will have
2 processes, and the programs will be launched together when
all inputs are ready and 8 worker processes are available. The
user has specified @par=sum(procs) to prevent mistakes with
the process counts. Providing fewer processes here is detected by
Swift/T as a runtime error.

We implemented launch_multi() without modification to
the MPI_Comm_launch () signature. launch_multi () is simply
a Swift/T @par function (cf. Table 2) that performs an
MPI_Comm_split() and runs MPI_Comm_launch() on the re-
sultant subcommunicators.

The MPI Standard provides for “colors,” actually integer cat-
egories, as input to MPI_Comm_split (). The colors specified to
determine how the parent ranks propagate into the new com-
municator. The default for launch_multi () is to simply group
them in order, so that nearby ranks in the parent are grouped to-
gether in the new communicators. In the case of a more complex
data transfer pipeline, a more specific layout can be given, as in
the synthetic Listing 4.

1 string color_settings_array[] = ["0- 56", "6, 7", // Node 0
2 "8-13", "14,15", // Node 1

3 "16-23"1; // Node 2

4 color_settings = join(color_settings_array, "y

5 | @par=sum(procs)

6 launch_multi(procs, cmds, a, e, color_settings);

Listing 4: Invocation of launch_multi () with custom color
settings .

The resulting layout is depicted in Fig. 3. The user has a sim-
ulation Sim connection to an ADIOS forwarding component FWD.
These communicate via shared memory, not seen by Swift/T. Data
is transferred from FWD to BUF, another forwarding component
that uses the RAM on a nodes as a buffer and leaves many cores
unused. Data from BUF is sent to a visualization task Viz, that
uses all cores on the node and produces graphics.

5. Evaluation

In this section, we assess the benefits of MPI_Comm_launch in
the context of a real Swift/T workflow: CODES-ESW.!! This work-
flow aims to perform ensemble simulations of high-performance
networks. It was built to enable design-space exploration of col-
lective algorithms on various network topologies. We also use a
synthetic workflow to evaluate performance in terms of launch
time.

1 https://bitbucket.org/mdorier/codes-esw.

https://bitbucket.org/mdorier/codes-esw

584 J-M. Wozniak, M. Dorier, R. Ross et al. / Future Generation Computer Systems 101 (2019) 576-589

N
&

Node

0 50 100 150 200 250 300 350
Time (sec)

(a) Workflow version 1: tasks running as

functions

Node

23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
a
3
2
1
0

0 50 100 150 200
Time (sec)

(b) Workflow version 2: tasks running as

MPI programs

Fig. 4. Timeline of the workflow’s execution (1152 tasks completed) by using both approaches: tasks as function, and tasks as isolated MPI programs. Green tasks
completed successfully. Red tasks were intentionally targeted for failure (fault injection parameter set to 226 here) and were later restarted. Yellow tasks aborted
because another task failed and were restarted as well. (For interpretation of the references to color in this figure legend, the reader is referred to the web version

of this article.)
5.1. CODES-ESW workflow

At its core, CODES-ESW relies on CODES [26], an HPC network
simulator based on ROSS [27], a parallel discrete-event simulator
that executes on multiprocessor systems and supercomputers.
CODES can simulate networks such as torus, dragonfly, fat tree, or
slimfly. It relies on the CoRtEX library'? to simulate MPI collective
algorithms. These algorithms are written in Python.

CODES-ESW aims to run many instances of CODES, varying
input parameters such as link bandwidth, number and size of
messages, and size of the network. Each execution of CODES is
preceded by the execution of a Python script that generates the
required input file. When an instance of CODES completes, a shell
script is called to clean up the resulting files and extract useful
statistics.

CODES instances may sometimes fail for various reasons. They
may run out of memory, in which case a call to malloc will
fail, making the instance fail. In this situation the task could be
restarted on more nodes, to benefit from larger memory. CODES
may call MPI_Abort if the simulation runs into an incorrect state,
in which case the error should be reported to the user so that
trace files can be examined. In all these cases, CODES-ESW should
be able to restart submitting instances, until all instances have
successfully run to completion or failing tasks have been reported
to the user.

We implemented two versions of CODES-ESW. The library
version relies on Swift/T’s leaf functions implemented in C/Tcl:
CODES is recompiled as a library that gets called from Swift/T.
The launch version relies on the Swift/T-level launch_turbine
function that itself internally relies on the new
MPI_Comm_launch. This second version launches a subworkflow
for every instance of CODES. We compare both versions, first in
terms of development effort, then in terms of performance in the
presence of faults.

5.2. Qualitative evaluation

We wrote both versions of our workflow starting from a
common version that was missing only the CODES invocation. The
library version raised a plethora of challenges and issues that we
expect many developers would encounter with other simulation-
based workflows that intend to call parallel applications via a
library interface.

12 https://xgitlab.cels.anl.gov/mdorier/dumpi- cortex.

CODES as a function: CODES is initially an executable. We had
to replace its main function with a function that could
be called from Swift/T. This also involved writing a Tcl
interface to this function.

Global variables: Both ROSS and CODES include many global or
static variables spread in many files. These global variables
need to be reset to their original value before CODES runs
again. Otherwise, some incorrect values pollute subsequent
runs.

MPI communicators: The ROSS and CODES systems use
MPI_COMM_WORLD for communication. Yet inside a Swift/T
workflow all communications have to go through a custom
communicator gathering only workers involved in a par-
ticular task. MPT_COMM_WORLD, which gathers all workers
plus the ADLB scheduler, should not be used.

Standard output: CODES outputs its data in files, but also on
the standard output and standard error. To prevent mixing
output from concurrently running CODES instances, we
had to hard-code standard output redirections directly in
C inside CODES.

Python interpreters: Both Swift/T and CODES use a Python in-
terpreter. While we could not instantiate isolated inter-
preters for each CODES instance and for Swift/T, we had to
make sure the only interpreter that exists in the memory of
each Swift/T worker is properly used by CODES instances
and that CODES instances do not interfere with one another
at this level.

Memory leaks: The biggest challenge consisted of finding all
memory leaks in CODES. Indeed, when CODES runs as an
executable, it does not matter if a segment of memory
allocated at the beginning for the purpose of storing a large
data structure is not freed at the end. When running mul-
tiple instances one after the other from the same program,
however, memory leaks accumulate and eventually cause
the entire workflow to abort.

In contrast, the launch version of CODES-ESW, which relies
on MPI_Comm_launch, does not present any of the aforemen-
tioned issues; it simply requires the use of the Swift/T launch ()
function as described in Section 4.3.2. Thanks to our launch and
launch_turbine functions, no Tcl interface is required. There is
no need to change a single line of CODES, since CODES run as an
executable. There also is no need to reset global variables, change

https://xgitlab.cels.anl.gov/mdorier/dumpi-cortex

J-M. Wozniak, M. Dorier, R. Ross et al. / Future Generation Computer Systems 101 (2019) 576-589 585

the communicator, fix memory leaks, or solve any issue related
to Python interpreters.

This experience in developing two versions of the same work-
flow is what motivated us to propose the addition of
MPI_Comm_launch in the MPI standard. Discussions with other
researchers trying to simplify ensemble simulations with their
own code led us to the conclusion that there is a broader need
for such functionality, as they also face the same issues related
to global variables, memory leaks, and more generally the lack of
resource isolation that comes with rewriting an executable as a
library function.

5.3. Quantitative evaluation: fault tolerance

The goal in this section is to show that MPI_Comm_launch
enables task-level fault tolerance and to quantify the benefits of
such fault tolerance compared with restarting the entire work-
flow whenever one task fails.

Experimental methodology. We ran our experiments on 25 nodes
of the parasilo cluster of Grid’5000."> Each node is a Dell Pow-
erEdge R630 with 16 cores and 128 GB of memory. These nodes
are connected through a 10 Gigabit Ethernet network. We used
1 node to run Swift/T’s ADLB scheduler and 24 nodes to run
the workflow’s tasks. Although each instance of CODES could be
deployed on several nodes, we ran them on one node here for
the sake of simplicity. For each instance of CODES started by
the workflow, we report its start time and end time. We do not
monitor other tasks of the workflow such as those that create the
input files for each CODES instance, since these tasks’ run time is
negligible compared with the run time of CODES. The run time of
the workflow is the difference between the end time of the last
task and the start time of the first task.

Fault injection. We injected faults by “corrupting” one of the core
functions of ROSS: tw_event_new. This function is repeatedly
called by CODES to create its network events. When the task
starts, a random number R is drawn from a uniform distribution
in the range [0, 2X] (for some chosen values of X). R is then
the number of times tw_event_new will succeed before causing
a segmentation fault. Depending on input parameters, a CODES
instance will call tw_event_new from a hundred times to ten
million times.

Arguably, other fault injection methods and distributions
could be used (such as issuing a Bernoulli trial at every call to
tw_event_new). However, the pattern of faults is linked to their
causes (for example, faults induced by a lack of available memory
do not follow a memoryless process, unlike faults caused by
radiation-induced memory corruption). The goal in this evalua-
tion is simply to illustrate the workflow’s reaction to failures in
one example of a failure pattern.

Workflow configuration. We configured the workflow to run 1152
instances of CODES. Each instance executes the simulation of a
series of broadcast operations using a binomial tree algorithm on
a torus network. We varied a number of input parameters of these
simulations: the number of nodes participating in the broadcast,
the link bandwidth, the amount of data sent, the number of times
the broadcast is repeated, the buffer size in routers, and the
network packet size. When injecting failures, we used the fault
injection parameter X of 26, 27, 28, and 29. We found that 26 is
the lowest value that allows failures to have a noticeable impact
on the run time while still keeping this run time reasonably low
for each execution of the workflow (up to 10 min). Each execution
of the workflow was repeated 5 times with different seeds for the
random number generator.

13 https://www.grid5000.fr.

600

B Without MPI_Comm_launch
I With MPI_Comm_launch

Run time (sec)

26 27 28 29 None
Fault parameter

Fig. 5. Run time of the workflows under different values of the fault injec-
tion parameter. Median over 5 runs. Error bars correspond to minimum and
maximum.

B Without MPI_Comm_launch
E With MPI_Comm_launch

Number of crashed tasks

26 27 28 29 None
Fault parameter

Fig. 6. Number of task failures as a function of the fault injection parameter for
the two implementations of the workflow.

Results. Fig. 4 shows the timeline of two executions of the work-
flow when setting the fault injection parameter to 26. Fig. 4(a)
corresponds to the library version of the workflow. In this version,
any task fault causes the entire workflow to abort, so all tasks
must be restarted. Red tasks represent tasks in which a fault was
injected, leading them to fail. Yellow tasks represent tasks that
aborted as a result of another task failing. Failed and aborted tasks
must be restarted. Fig. 4(b) corresponds to the launch version of
the workflow. We can see that in this version, the failure of an
task does not cause the entire workflow to abort.

Fig. 5 shows the run time of both versions of the workflow as
a function of the fault injection parameter. It reports the median
over 5 runs for each configuration, along with the minimum and
maximum as error bars. We can see that in the launch version, the
run time is barely affected by faults (a few seconds of overhead
not visible in the figure). In the library version, however, a high
number of faults dramatically increases the run time. Overall,
even without faults, the launch version performs better than the
library version.

Fig. 6 shows the number of tasks that failed during the exe-
cution of each version of the workflow. This does not include the
tasks that have aborted as a result of a fault in another task. For a
fault injection parameter of 26, we see that although the method
used to inject faults is the same in both workflows, we obtain a
higher number of task failures. This is due to the fact that in the
library version, a task failure aborts many other tasks. These tasks
have to be restarted, which gives them a second opportunity to
fail, and so on.

5.4. Quantitative evaluation: performance

In this section, we evaluate the ability of our system to launch
many parallel MPI tasks inside a workflow. Note that this is
an evaluation of our prototype, which is in no way optimally
implemented, as explained in Section 3.4.

https://www.grid5000.fr

586 J-M. Wozniak, M. Dorier, R. Ross et al. / Future Generation Computer Systems 101 (2019) 576-589

4,000

tasks/second
- N oW
S - =}
g 8 8
8 8 8

0 25 50 75 100 125 150 175 200 225 250
nodes

Fig. 7. Task rate for 0 s 1-process tasks.

Experimental methodology. We ran our experiments on the Blues
cluster at Argonne National Laboratory.'* In the queue batch
that was used here, each node contained a Sandy Bridge Xeon E5-
2670 at 2.6 GHz with 16 cores and 64 GB of memory. These nodes
are connected through a QLogic QDR InfiniBand Interconnect (fat-
tree topology). We used 1 node to run Swift/T’s ADLB scheduler
and the remaining nodes to run the workflow tasks. Thus, in
our largest tests, 256 x 16 = 4096 cores were available to the
workflow.

Workflow pattern: Fixed-size tasks. In the first set of measure-
ments, we used fixed-size parallel tasks. Fixed-size tasks are
scripted as shown in Listing 5. On line 1, the integer P is set
to 1, and used in the @par annotation to run the given task on
that many MPI processes (MPI_Comm_size (MPI_COMM_WORLD)
== P). On line 2, the integer N sets the number of loop iterations
to that number; in this case, there are enough tasks for each
worker to perform 10. On line 7, the new launch () feature runs
the given program on P processes with the given input args.
On line 8, the exit code is then checked for an error condition.
The user executable program example.x simply performs the
MPI Init and Finalize operations, and exits with code 0. (The
program is modified in our final case to sleep for 1 s.) The only
communication in the system, once running, is that workers must
retrieve work from the Swift/T ADLB server (1 task at a time).

P=1;
N = turbine_workers() * 10;
program = "example.x";
printf ("swift: launching: %s", program) ;
foreach i in [0:N-1] {

args = ["abc", "defg'l;

exit_code = @par=P launch(program, args);

if (exit_code !=0) {

printf ("The launched application failed!";

O WONOUTAWN=

_

3}
Listing 5: Workflow script for fixed-size tasks .

Results: Fixed-size tasks. We ran the fixed-size task workflow
on successively larger allocations on Blues. The task rate is ob-
tained by dividing the total number of tasks by the total wall
clock makespan time. Thus, the performance is penalized by any
straggling tasks.

For single process tasks, P = 1. The user program is ideally
a 0-second (O s) task, so all time is consumed by system over-
heads. Task rate results are shown in Fig. 7. As shown, the task
rate increases approximately linearly with the number of nodes,
indicating that the system overheads are dominated by local
operations (forking and loading example . x from the file system).
In our largest case, 2865 single-process tasks were launched per
second across 256 nodes.

For the 4-process tasks, the workflow script was modified so
that P = 4. In this case, launching example.x involves coordi-
nating 4 nodes, both by Swift/T and internally by mpiexec and
example.x itself. Task rate results are shown in Fig. 8. As shown,

14 http://www.lcrc.anl.gov/about/blues.

o

tasks/second

0 25 50 75 100 125 150 175 200 225 250
nodes

Fig. 8. Task rate for 0 s 4-process tasks.

[
)

tasks/second
- NN
O S o

o wn

0 25 50 75 100 125 150 175 200
nodes

Fig. 9. Task rate for 0 s mixed-process tasks.

°
c
g
$ 5.0
U
a2
)
% 2.5
o
S

0.0

0 25 50 75 100 125 150 175 200
nodes

Fig. 10. Task rate for 1 s mixed-process tasks.

the task rate increases approximately linearly with the number
of nodes, indicating that the system overheads are dominated by
operations local to the task. In our largest case, 815 4-process
tasks were launched per second across 256 nodes. This means
that extremely fine-grained MPI tasks with sub-second total run
times can be coupled together by our system into a workflow
application at cluster scale.

¢ = floor(log2(turbine_workers()));
N =c * 10;
printf ('W=%1i c=%i N=Yi tasks=%i",
turbine_workers(), c, N, c*N);
program = "example.x";
foreach i in [0:N-1] {
foreach j in [1:c] {
P =2%*x(j-1);
exit_code = @par=P launch(program, a);
if (exit_code !'=0) ...

- O WK NOULEA WN =

—_ =

3}

Listing 6: Workflow script for mixed-size tasks .

Workflow pattern: Mixed-size tasks. In the first set of measure-
ments, we used mixed-size parallel tasks. Mixed-size tasks are
scripted as shown in Listing 6. In these scripts, the task paral-
lelism P varies from 1 to half the system size. The values of P
step through powers of 2 (although this is not required by the
programming model). On line 1, the integer c is set to the log,()
of the system size, this is used to step through the powers of
2 with the parallel loop written on line 7. The loop index j is
exponentiated on line 8 to obtain the P value that is used to
launch the parallel task on line 9. In the performance results, we
use numbers of workers that are between powers of 2 (6, 12, 24,
...) to demonstrate the ability of the system to put small tasks in
the resulting schedule gaps (see Fig. 10).

Results for 0 s mixed-size tasks are shown in Fig. 9. In our
biggest case, we launched 28 tasks/second across 192 nodes of
Blues. In accordance with the script logic, the largest tasks in this
workflow ran on 64 nodes. Performance seems to level off at that

http://www.lcrc.anl.gov/about/blues

J-M. Wozniak, M. Dorier, R. Ross et al. / Future Generation Computer Systems 101 (2019) 576-589 587

point, probably due to the ability of the cluster to launch 64 task
jobs at that rate. This is lower than the rate for the 1 and 4 process
workloads above, but still enables workflows to use tasks with
subsecond runtimes. Note that while the task rate apparently
begins to dip, the amount of work per task is increasing with the
node count; this workflow is dominated by launching 64-node
MPI tasks.

Results for 1 s mixed-size tasks are shown in Fig. 10. In these
cases, example.x sleeps for 1 s before calling MPI_Finalize
and exiting. In our biggest case, we launched 8 tasks/second
across 192 nodes of Blues. In accordance with the script logic,
the largest tasks in this workflow ran on 64 nodes. Performance
does not seem to level off yet at that point, probably because
with the 1 s delay, the system still has capacity to start/stop
additional tasks per unit time. This demonstrates that our system
enables workflows to use tasks with short (~1 second) runtimes
on systems like Blues, even with a wide mix of task sizes.

6. Discussion

In this section, we discuss the semantics of
MPI_Comm_launch and potential additional functions following
similar semantics.

Launching multiple applications. Just as MPI_Comm_spawn has its
MPI_Comm_spawn_multiple to spawn processes from multiple
executables, we may be tempted to provide an
MPI_Comm_launch_multiple. It is debatable, however,
whether this function would be useful. One can argue that al-
lowing each process calling MPI_Comm_launch to provide a
different command and different arguments would be sufficient
to effectively start an MPMD subapplication.

MPI_Comm_launch_multiple can be justified if we want
to explicitly forbid MPI_Comm_launch from accepting different
commands and arguments for each process; the command and
arguments in MPI_Comm_launch would be relevant only in the
root process.

Communicating outside a task. If communication is required be-
tween processes inside and outside a launched task, functions
such as MPI_Comm_connect, accept, join can be used, as
well as other communication mechanisms such as local storage,
burst buffers, and shared memory.

We note that while MPI_Comm_spawn gives the calling pro-
cesses an intercommunicator allowing them to communicate
with the spawned processes, MPI_Comm_launch blocks the call-
ing processes during the execution of the child application. Hence
there is no reason to establish a communication mechanism
between the child application and the calling processes. The
latter will not be able to perform any communication during the
lifetime of the child application anyway.

One could argue that the child application may want to com-
municate with the rest of the processes in the parent application
that are not paused (those that did not call MPI_Comm_launch).
This notion of “the rest of the processes” cannot be well defined,
however, given that an MPI application always has the possibility
of spawning new processes (with MPI_Comm_spawn) or connect-
ing to other processes (with MPI_Comm_connect/accept).

One possibility would be to offer an alternative function,
MPI_Comm_launch_and_connect, with the following proto-
type:

int MPI_Comm_launch_and_connect (char* cmd,
char* argv([],
MPI_Info info, int root, MPI_Comm comm,
int launch, MPI_Comm* newcomm, int* status)

On processes where launch = 0, this function would have
the semantics of MPI_Comm_spawn, and newcomm would become
a new intercommunicator connected to the child application. The
cmd, argv, info, and status arguments would not be used on
these processes. On processes where launch = 1, this func-
tion would have the semantics of an MPI_Comm_launch, and
newcomm would be left unused. However, we think that such an
asymmetric semantics should be avoided altogether.

We advocate for the use of MPI_Comm_accept/connect to
connect child applications, or processes of a child application with
other processes in its parent application.

Note on multithreading. When MPI is used in a multithreaded
environment (that is, MPI_THREAD_MULTIPLE is used), only the
thread calling MPI_Comm_launch is blocked. Other threads of
the parent application continue running. In this particular case
(which we do not discuss further in this paper), both the child and
parent application processes continue running, but the number
of running processing entities (threads of processes) still remains
constant. It is worth noting that on most supercomputers, the
OS limits the use of threads to one per core, for the same rea-
son they limit the number of processes to one per core. Our
MPI_Comm_launch function still ensures one running processing
entity per core at all time.

7. Conclusion

We have proposed MPI_Comm_launch to enable an MPI ap-
plication to run inside another MPI application. This function
overcomes the limitations of existing ways of implementing
MPMD programs using MPL In particular, we illustrated its ad-
vantages in two practical use cases, using Swift/T and LLNL's
Cram. The evaluation of this functionality with a real HPC work-
flow, CODES-ESW, showed that MPI_Comm_launch (1) enables
faster development (from 3 weeks of development using Swift/T
existing interface to barely an hour using an interface based on
MPI_Comm_launch), and (2) makes the workflow fault tolerant at
the task level, considerably improving performance and resource
utilization. We plan to propose a more efficient implementation
of MPI_Comm_launch inside the process management part of
MPICH, first as an MPI extension (MPIX_Comm_launch), and to
propose this new function to the MPI Forum.

Acknowledgments

We thank Pavan Balaji and Rajeev Thakur for their insights
about the MPI standard and its implementations, Misbah
Mubarak for her help setting up CODES simulations, and the
ROSS developers for quickly reacting to our feature requests.
This research was supported by the Exascale Computing Project
(17-SC-20-SC), a joint project of the U.S. Department of Energy’s
Office of Science and National Nuclear Security Administration,
responsible for delivering a capable exascale ecosystem, includ-
ing software, applications, and hardware technology, to sup-
port the nation’s exascale computing imperative. This material
is based upon work supported by the U.S. Department of En-
ergy, Office of Science, Office of Advanced Scientific Computing
Research, under contract number DE-AC02-06CH11357 We grate-
fully acknowledge the computing resources provided on Blues,
a high-performance computing cluster operated by the Labora-
tory Computing Resource Center at Argonne National Laboratory.
Experiments presented in this paper were carried out using the
Grid’5000 testbed, supported by a scientific interest group hosted
by Inria and including CNRS, RENATER and several universities as
well as other organizations (see https://www.grid5000.fr).

https://www.grid5000.fr

588 J-M. Wozniak, M. Dorier, R. Ross et al. / Future Generation Computer Systems 101 (2019) 576-589

Declaration of competing interest

The authors declared that they had no conflicts of interest with
respect to their authorship or the publication of this article.

References

[1] JM. Wozniak, T.G. Armstrong, M. Wilde, D.S. Katz, E. Lusk, LT. Fos-
ter, Swift/T: scalable data flow programming for distributed-memory
task-parallel applications, in: Proc. CCGrid, 2013.

[2] T.G. Armstrong,].M. Wozniak, M. Wilde, L.T. Foster, Compiler techniques
for massively scalable implicit task parallelism, in: Proc. SC'14, 2014.

[3] E. Ogasawara,]. Dias, V. Silva, F. Chirigati, D. de Oliveira, F. Porto, P.
Valduriez, M. Mattoso, Chiron: a parallel engine for algebraic scientific
workflows, Concurr. Comput.: Pract. Exper. 25 (16) (2013) 2327-2341.

[4] E.L. Lusk, S.C. Pieper, RM. Butler, More scalability, less pain: a simple
programming model and its implementation for extreme computing,
SciDAC Review 17.

[5] M. Dorier, J.M. Wozniak, R. Ross, Launching MPI applications inside MPI
applications, in: Proc. WORKS @ SC, 2017.

[6] J.L. Hennessy, D.A. Patterson, Computer Architecture: A Quantitative
Approach, third ed., Elsevier Science, 2002.

[7] W. Bland, G. Bosilca, A. Bouteiller, T. Herault, J. Dongarra, A proposal for

[8

user-level failure mitigation in the MPI-3 standard.

M. Dorier, G. Antoniu, F. Cappello, M. Snir, R. Sisneros, O. Yildiz, S. Ibrahim,

T. Peterka, L. Orf, Damaris: addressing performance variability in data

management for post-petascale simulations, ACM Trans. Parallel Comput.

(ToPC) (2016) URL http://dl.acm.org/citation.cfm?id=2987371.

P. Balaji, D. Buntinas, D. Goodell, W. Gropp, J. Krishna, E. Lusk, R. Thakur,

Pmi: A scalable parallel process-management interface for extreme-scale

systems, in: European MPI Users’ Group Meeting, Springer, 2010, pp.

31-41.

[10] J. Gyllenhaal, T. Gamblin, A. Bertsch, R. Musselman, Enabling high job
throughput for uncertainty quantification on BG/Q, ser. IBM HPC Systems
Scientific Computing User Group (SCICOMP).

[11] NJ. Wright, W. Pfeiffer, A. Snavely, Characterizing parallel scaling of
scientific applications using ipm, in: The 10th LCI International Conference
on High-Performance Clustered Computing, Citeseer, 2009, pp. 10-12.

[12] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, K. Riley, 24/7 characterization
of petascale I/O workloads, in: Cluster Computing and Workshops, 2009.
CLUSTER'09. IEEE International Conference on, IEEE, 2009, pp. 1-10.

[13] S. Plimpton, Fast parallel algorithms for short-range molecular dynamics,
J. Comput. Phys. 117 (1) (1995) 1-19.

[14] C. Rycroft, Voro++: A three-dimensional voronoi cell library in c++, Chaos
19 (4) (2009) 041111.

[15] G. Voronoi, Nouvelles applications des parametres continus a la theorie
des formes quadratiques,]. Reine Angew. Math. 133 (1907) 97-178.

[16] Q. Liu, J. Logan, Y. Tian, H. Abbasi, N. Podhorszki, J.Y. Choi, S. Klasky, R.
Tchoua, J. Lofstead, R. Oldfield, et al., Hello ADIOS: the challenges and
lessons of developing leadership class 1/0 frameworks, Concurr. Comput.:
Pract. Exper. 26 (7) (2014) 1453-1473.

[17] J.F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, C. Jin, Flexible io and
integration for scientific codes through the Adaptable 10 System (ADIOS),
in: Proceedings of the 6th International Workshop on Challenges of Large
Applications in Distributed Environments, ACM, 2008, pp. 15-24.

[18] J. Dayal, D. Bratcher, G. Eisenhauer, K. Schwan, M. Wolf, X. Zhang, H.
Abbasi, S. Klasky, N. Podhorszki, Flexpath: Type-based publish/subscribe
system for large-scale science analytics, in: 2014 14th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Grid Computing, 2014, pp.
246-255, http://dx.doi.org/10.1109/CCGrid.2014.104.

[19] M. Wilde, M. Hategan, .M. Wozniak, B. Clifford, D.S. Katz, I. Foster, Swift:
a language for distributed parallel scripting, Parallel Comput. 37 (9) (2011)
http://dx.doi.org/10.1016/j.parco.2011.05.005.

[20] J.M. Wozniak, T.G. Armstrong, D.S. Katz, M. Wilde, LT. Foster, Toward
computational experiment management via multi-language applications,
in: DOE Workshop on Software Productivity for EXtreme Scale Science
(SWP4XS), 2014.

[21] J.M. Wozniak, T.G. Armstrong, K.C. Maheshwari, D.S. Katz, M. Wilde, LT.
Foster, Interlanguage parallel scripting for distributed-memory scientific
computing, in: WORKS ’15: Proceedings of the 10th Workshop in Support
of Large-Scale Science, 2015.

[22] Y. Zhao, M. Hategan, B. Clifford, 1. Foster, G. von Laszewski, 1. Raicu, T. Stef-
Praun, M. Wilde, Swift: Fast, reliable, loosely coupled parallel computation,
in: Proc. Workshop on Scientific Workflows, 2007.

[23] J.M. Wozniak, T.G. Armstrong, K. Maheshwari, E.L. Lusk, D.S. Katz, M.
Wilde, L.T. Foster, Turbine: a distributed-memory dataflow engine for high
performance many-task applications, Fundamenta Inform. 28 (3) (2013).

[24]].M. Wozniak, T. Peterka, T.G. Armstrong, J. Dinan, E.L. Lusk, M. Wilde, L.T.
Foster, Dataflow coordination of data-parallel tasks via MPI 3.0, in: Proc.
Recent Advances in Message Passing Interface (EuroMPI), 2013.

[25] D. Beazley, Automated scientific software scripting with SWIG, Future
Gener. Comput. Syst. 19 (5) (2003) 599-609, http://dx.doi.org/10.1016/
S0167-739X(02)00171-1.

[26] J. Cope, N. Liu, S. Lang, P. Carns, C. Carothers, R. Ross, Codes: Enabling
co-design of multilayer exascale storage architectures, in: Proceedings of
the Workshop on Emerging Supercomputing Technologies, Vol. 2011, 2011.

[27] CD. Carothers, D. Bauer, S. Pearce, ROSS: A high-performance, low-
memory, modular time warp system,]. Parallel Distrib. Comput. 62 (11)
(2002) 1648-16609.

[9

Justin M. Wozniak received his Ph.D. from Notre Dame
in 2008. He is a Computer Scientist at Argonne National
Laboratory, and a Fellow at the Computation Institute
at the University of Chicago. His recent work is related
to the programming languages for high-performance
scientific workflows. He has also been involved in
storage system research and design. He is interested in
concurrency, fault tolerance and recovery, simulation
of computer systems, and control theoretic applica-
tions in computing systems. Infrastructures targeted
by my projects include clusters, clouds, grids, and
supercomputers such as Theta and Summit.

Matthieu Dorier is a software development specialist at Argonne National Labo-
ratory since 2017. He received his Ph.D. in Computer Science from Ecole Normale
Superieure de Rennes (France) in December 2014, and followed with postdoc at
Argonne National Laboratory from 2015 to 2017. His research interests include
efficient 1/O, data management and storage for high-performance simulations,
data-intensive computing, data analytics and visualization. He has published
several research papers in top HPC conferences, including SC, IPDPS and Cluster,
and journals such as IEEE TPDS, Elsevier FGCS, and ACM ToPC.

Rob Ross is a senior fellow in the Northwestern-
Argonne Institute for Science and Engineering and in
the University of Chicago/Argonne Computation Insti-
tute. He is also an adjunct assistant professor in the
Department of Electrical and Computer Engineering at
Clemson University.

Rob received his Ph.D. in computer engineering
from Clemson University in 2000. He currently holds
~ several leadership positions at Argonne and in the
L U.S. DOE computing community, including serving as

deputy director of the Scientific Data Management,
Analysis, and Visualization Institute, and he co-led development of initial plans
for the Data Management component of the DOE Office of Science Exascale
Computing activity.

Tong Shu received her B.S. degree in information
management and system from Peking University, and
her Ph.D. degree in computer science from New Jersey
Institute of Technology. She is a postdoctoral ap-
pointee at Argonne National Laboratory. Her research
interests include scientific workflow optimization, ma-
chine learning, big data processing, energy efficiency,
cloud computing, high-performance computing and
networking, and wireless networks.

Tahsin Kurc is a Research Associate Professor in the
Department of Biomedical Informatics at Stony Brook
University and holds a Joint Faculty Appointment in
Scientific Data Group at Oak Ridge National Labora-
tory. He received his Ph.D. in computer science from
Bilkent University, Turkey, in 1997. His research seeks
to develop informatics platforms that enable scalable
management and analysis of large volumes of high-
resolution, high-throughput scientific data on high end
computing systems.

Li Tang is a Research Associate of Brookhaven National
Laboratory. Before joining Brookhaven National Labora-
tory, he graduated with his Ph.D. from the Department
of Computer Science and Engineering at University
of Notre Dame. His research interests include hard-
ware/software co-design, big data, performance/en-
ergy analysis and optimization, and heterogeneous
computing.

http://refhub.elsevier.com/S0167-739X(18)30757-X/sb1
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb1
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb1
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb1
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb1
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb2
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb2
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb2
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb3
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb3
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb3
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb3
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb3
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb5
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb5
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb5
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb6
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb6
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb6
http://dl.acm.org/citation.cfm?id=2987371
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb9
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb9
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb9
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb9
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb9
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb9
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb9
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb11
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb11
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb11
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb11
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb11
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb12
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb12
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb12
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb12
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb12
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb13
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb13
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb13
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb14
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb14
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb14
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb15
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb15
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb15
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb16
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb16
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb16
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb16
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb16
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb16
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb16
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb17
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb17
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb17
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb17
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb17
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb17
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb17
http://dx.doi.org/10.1109/CCGrid.2014.104
http://dx.doi.org/10.1016/j.parco.2011.05.005
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb20
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb20
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb20
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb20
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb20
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb20
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb20
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb21
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb21
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb21
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb21
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb21
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb21
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb21
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb22
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb22
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb22
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb22
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb22
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb23
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb23
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb23
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb23
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb23
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb24
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb24
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb24
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb24
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb24
http://dx.doi.org/10.1016/S0167-739X(02)00171-1
http://dx.doi.org/10.1016/S0167-739X(02)00171-1
http://dx.doi.org/10.1016/S0167-739X(02)00171-1
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb26
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb26
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb26
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb26
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb26
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb27
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb27
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb27
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb27
http://refhub.elsevier.com/S0167-739X(18)30757-X/sb27

J-M. Wozniak, M. Dorier, R. Ross et al. / Future Generation Computer Systems 101 (2019) 576-589 589

Norbert Podhorszki is a senior research scientist in
the Scientific Data Group in the Oak Ridge National
Laboratory. He is one of the key developers of ADIOS
that won an R&D100 award in 2013. His main research
interest is in creating I/O and staging solutions for in-
situ processing of data on leadership class computing
systems. He received his Ph.D. in Information Tech-
nology from the Eotvos Lorand University of Budapest.
He has worked in the field of logic programming, per-
. A formance monitoring and analysis of message-passing
programs, application monitoring in Grid environments
and application development in Desktop Grids, scientific workflow technologies
in supercomputing projects, and high performance I/O. He is author and co-
author of more than 100 scientific papers and book chapters. He has given
many tutorials on ADIOS, including several times at the Supercomputing and
the International Supercomputing conferences.

Matthew Wolf

	MPI jobs within MPI jobs: A practical way of enabling task-level fault-tolerance in HPC workflows
	Introduction
	Background and related work
	Note on the failure model
	MPMD techniques using MPI
	MPI launcher MPMD mode
	Communicator management
	MPI_Comm_spawn(_multiple)

	MPI_Comm_launch
	Semantics
	MPI_Comm_launch is not MPI_Comm_spawn
	MPI_Comm_launch for fault tolerance
	Implementation

	Case studies
	LLNL's cram
	Cram's limitations
	Cram with MPI_Comm_launch

	Code coupling: LAMMPS+Voronoi tessellation
	Swift/T workflows
	The Swift/T task model
	Swift/T with MPI_Comm_launch

	In situ code coupling with coordinated launch

	Evaluation
	CODES-ESW workflow
	Qualitative evaluation
	Quantitative evaluation: fault tolerance
	Quantitative evaluation: performance

	Discussion
	Conclusion
	Acknowledgments
	Declaration of competing interest
	References

